Crude Ethanol Extract of Diospyros mespiliformis Hochst. ex A. DC. Ebenaceae Leaf and Its Fractions Ameliorate Hyperglycemia and Hyperlipidemia in Alloxan-induced Diabetic Rats
DOI:
https://doi.org/10.25026/jtpc.v8i2.625Keywords:
Alloxan, Antidiabetic activity, Diospyros mespiliformis, Hypoglycemia, HypolipidemiaAbstract
This study investigated the antidiabetic activity of the crude ethanol extract of Diospyros mespiliformis (DM) and its ethyl acetate (EEF) and aqueous (AQF) fractions on alloxan-induced diabetic rats. The result indicated a significant (p < 0.05) decrease and improvement in fasting blood glucose (FBG) level and body weight, respectively. The treatment groups exhibited a significantly (p < 0.05) decreased aspartate aminotransferase (AST) level (100-117 IU/L) and decreased gamma-glutamyl transferase (GGT) level in the EEF (4.80 ± 1.02 IU/L) and AQF (5.80 ± 0.80 IU/L) groups only. All the extract-treated groups exhibited a significant increase (p < 0.05) in urea and creatinine levels than the naïve control group (6.94 ± 0.20 mM/L). Moreover, the Na+ remained significantly (p > 0.05) unchanged while the K+ level was significantly (p < 0.05) increased for the treatment groups. The HCO3- of the treated groups increased significantly (p < 0.05) except for the AQF (21.60 ± 1.63 mM/L) group. The total cholesterol and triglyceride levels decreased significantly (p < 0.05) for the treatment groups while the high-density lipoprotein-cholesterol (HDL-C) and low-density lipoprotein-cholesterol (LDL-C) levels remained unchanged but significantly higher than the metformin group. DM possesses significant hypoglycemic and hypolipidemic activity lowering hyperglycemia and hyperlipidemia, and improving body weight and diabetic markers.
Downloads
References
[1] American Diabetes Association Professional Practice Committee. (2022). Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2022. Diabetes Care, 45(Supplement_1), S17-S38. https://doi.org/https://doi.org/10.2337/dc22-s002
[2] Athyros, V. G., Doumas, M., Imprialos, K. P., Stavropoulos, K., Georgianou, E., Katsimardou, A., & Karagiannis, A. (2018). Diabetes and lipid metabolism. Hormones, 17(1), 61-67. https://doi.org/10.1007/s42000-018-0014-8
[3] American Diabetes Association. (2020). Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2020. Diabetes Care, 43(Supplement_1), S98-S110. https://doi.org/10.2337/dc20-S009
[4] Dahiru, M. M., & Nadro, S. M. (2022). A review of the Mechanisms of Action and Side Effects of Anti-diabetic Agents. Trends in Pharmaceutical Sciences, 8(3), 195-210. https://doi.org/http://dx.doi.org/10.30476/TIPS.2022.95931.1153
[5] Li, S., Odedina, S., Agwai, I., Ojengbede, O., Huo, D., & Olopade, O. I. (2020). Traditional medicine usage among adult women in Ibadan, Nigeria: a cross-sectional study. BMC Complementary Medicine and Therapies, 20(1), 93. https://doi.org/10.1186/s12906-020-02881-z
[6] Verma, S., Gupta, M., Popli, H., & Aggarwal, G. (2018). Diabetes mellitus treatment using herbal drugs. International Journal of Phytomedicine, 10(1), 1-10.
[7] Bindu, J., & Narendhirakannan, R. T. (2018). Role of medicinal plants in the management of diabetes mellitus: a review. 3 Biotech, 9(1), 4. https://doi.org/10.1007/s13205-018-1528-0
[8] Dahiru, M. M. (2023). Recent advances in the therapeutic potential phytochemicals in managing diabetes. Journal of Clinical and Basic Research, 7(1), 13-20. https://doi.org/http://dx.doi.org/10.61186/jcbr.7.1.13
[9] Dahiru, M. M., Umar, A. S., Muhammad, M., Fari, I. I., & Musa, Z. Y. (2024). Phytoconstituents, Fourier-Transform Infrared Characterization, and Antioxidant Potential of Ethyl Acetate Extract of Corchorus olitorius (Malvaceae). Sciences of Phytochemistry, 3(1), 1-10. https://doi.org/https://doi.org/10.58920/sciphy0301208
[10] Dahiru, M. M., & Nadro, M. S. (2022). Phytochemical Composition and Antioxidant Potential of Hyphaene thebaica Fruit. Borneo Journal of Pharmacy, 5(4), 325-333. https://doi.org/https://doi.org/10.33084/bjop.v5i4.3632
[11] Dahiru, M. M., & Nadro, S. M. (2022). Hypolipidemic Potential of Ethyl acetate Extract of Hyphaene thebaica Fruit in Streptozotocin-induced Diabetic Rats. Majalah Obat Tradisional, 27(2), 159-164. https://doi.org/https://doi.org/10.22146/mot.75401
[12] Dahiru, M. M., Ahmadi, H., Faruk, M. U., Aminu, H., Hamman, & Abreme, G. C. (2023). Phytochemical Analysis and Antioxidant Potential of Ethylacetate Extract of Tamarindus Indica (Tamarind) Leaves by Frap Assay. Journal of Fundamental and Applied Pharmaceutical Science, 3(2), 45-53. https://doi.org/https://doi.org/10.18196/jfaps.v3i2.16708
[13] Musa, N., Dahiru, M. M., & Badgal, E. B. (2024). Characterization, In Silico Antimalarial, Antiinflammatory, Antioxidant, and ADMET Assessment of Neonauclea excelsa Merr. Sciences of Pharmacy, 3(2), 92-107. https://doi.org/https://doi.org/10.58920/sciphar0302232
[14] Doughari, J. H. (2012). Phytochemicals: extraction methods, basic structures and mode of action as potential chemotherapeutic agents. INTECH Open Access Publisher Rijeka, Croatia.
[15] Uduwana, S., Abeynayake, N., & Wickramasinghe, I. (2023). Synergistic, antagonistic, and additive effects on the resultant antioxidant activity in infusions of green tea with bee honey and Citrus limonum extract as additives. Journal of Agriculture and Food Research, 12, 100571. https://doi.org/https://doi.org/10.1016/j.jafr.2023.100571
[16] Dahiru, M. M., James, D., Abdulhasib Oluwatobi, O., Hesper Alex, Z., Rejoice Daniel, P., Usanye, Z., Patience, C., Hauwa Yahaya, A., & Muhammad, Z. (2024). Phytoconstituents and In Vitro Free Radical Scavenging Potential of n-Hexane and Aqueous Fractions of Cucurbita maxima and Leptadenia hastata. Sciences of Pharmacy, 3(4), 193-202. https://doi.org/https://doi.org/10.58920/sciphar0304265
[17] Dahiru, M. M., & Musa, N. (2024). Phytochemical Profiling, Antioxidant, Antidiabetic, and ADMET Study of Diospyros mespiliformis Leaf, Hochst Ex A. Dc Ebenaceae. J. Fac. Pharm. Ankara/Ankara Ecz. Fak. Derg, 48(2), 412-435. https://doi.org/http://dx.doi.org/10.33483/jfpau.1354293
[18] Dahiru, M. M., Musa, N., Abaka, A. M., & Abubakar, M. A. (2023). Potential Antidiabetic Compounds from Anogeissus leiocarpus: Molecular Docking, Molecular Dynamic Simulation, and ADMET Studies. Borneo Journal of Pharmacy, 6(3), 249-277. https://doi.org/https://doi.org/10.33084/bjop.v6i3.5027
[19] Dah?ru, M. M., & Musa, N. (2024). GC-MS Analysis, Antioxidant, Antidiabetic Activity, and ADMET Study of Diospyros mespiliformis Hochst. Ex A. DC. Ebenaceae Stembark. Hacettepe University Journal of the Faculty of Pharmacy, 44(3), 198-219.
[20] Dahiru, M. M., & Musa, N. (2024). Antidiabetic Activity of Diospyros mespiliformis on Alloxan-Induced Diabetic Rats. Journal of Fundamental and Applied Pharmaceutical Science, 5(1), 11-20.
[21] Dahiru, M. M., & Nadro, M. S. (2022). Anti-diabetic potential of Hyphaene thebaica fruit in streptozotocin-induced diabetic rats. Journal of Experimental and Molecular Biology, 23(1), 29-36. https://doi.org/https://doi.org/10.47743/jemb-2022-63
[22] Dahiru, M. M., Alfa, M. B., Abubakar, M. A., & Abdulllahi, A. P. (2024). Assessment of in silico antioxidant, anti-inflammatory, and antidiabetic activites of Ximenia americana L. Olacaceae. Advances in Medical, Pharmaceutical and Dental Research, 4(1), 1-13. https://doi.org/http://dx.doi.org/10.21622/AMPDR.2024.04.1.735
[23] Alkhalaf, M. I., Hussein, R. H., & Hamza, A. (2020). Green synthesis of silver nanoparticles by Nigella sativa extract alleviates diabetic neuropathy through anti-inflammatory and antioxidant effects. Saudi Journal of Biological Sciences, 27(9), 2410-2419.
[24] Dahiru, M. M., Ahmadi, H., Faruk, M. U., Aminu, H., & Hamman, A. G. C. (2023). Phytochemical Analysis and Antioxidant Potential of Ethylacetate Extract of Tamarindus Indica (Tamarind) Leaves by Frap Assay. Journal of Fundamental and Applied Pharmaceutical Science, 3(2), 45-53.
[25] Aminu, S. A., Ibrahim, Y., Ismail, H. A., & Ibrahim, I. O. (2021). Medicinal and Traditional Utilization of African Ebony (Diospyros mespiliformi): A Review. International Journal of Current Microbiology and Applied Sciences, 10(06), 811-817.
[26] Norwegian National Research Ethics Committees. (2018). Ethical Guidelines for the Use of Animals in Research. The Norwegian National Committee for Research Ethics in Science and Technology. https://www.forskningsetikk.no/en/guidelines/science-and-technology/ethical-guidelines-for-the-use-of-animals-in-research/
[27] Ighodaro, O. M., Adeosun, A. M., & Akinloye, O. A. (2017). Alloxan-induced diabetes, a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies. Medicina, 53(6), 365-374. https://doi.org/https://doi.org/10.1016/j.medici.2018.02.001
[28] Reitmann, S. (1957). Colorimetric method for the determination of serum glutamic pyruvate and glutamic oxaaloacetate transaminase. Amer. J. Clin. Path., 28, 56.
[29] Szasz, G. (1969). A kinetic photometric method for serum ?-glutamyl transpeptidase. Clinical Chemistry, 15(2), 124-136.
[30] Grant, G. H. (1987). Amino acids and proteins (Fundamentals of clinical chemistry) (3th edition ed.). WB Saunders Company.
[31] Chaney, A. L., & Marbach, E. P. (1962). Modified reagents for determination of urea and ammonia. Clinical Chemistry, 8(2), 130-132.
[32] Bartels, H., Böhmer, M., & Heierli, C. (1972). Serum creatinine determination without protein precipitation. Clinica chimica acta; international journal of clinical chemistry, 37, 193-197.
[33] Stein, E. A. (1987). Lipids, lipoproteins and apolipoproteins (3rd Edn. ed.). W.B Sauders
[34] McGowan, M. W., Artiss, J. D., Strandbergh, D. R., & Zak, B. (1983). A peroxidase-coupled method for the colorimetric determination of serum triglycerides. Clinical Chemistry, 29(3), 538-542.
[35] Warnick, G. R., & Albers, J. (1978). A comprehensive evaluation of the heparin–manganese precipitation procedure for estimating high density lipoprotein cholesterol. Journal of Lipid Research, 19(1), 65-76.
[36] Friedewald, W. T., Levy, R. I., & Fredrickson, D. S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry, 18(6), 499-502.
[37] Lenzen, S. (2008). The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia, 51(2), 216-226. https://doi.org/10.1007/s00125-007-0886-7
[38] Li, G. Q., Kam, A., Wong, K. H., Zhou, X., Omar, E. A., Alqahtani, A., Li, K. M., Razmovski-Naumovski, V., & Chan, K. (2012). Herbal medicines for the management of diabetes. Advances in experimental medicine and biology, 771, 396-413. https://doi.org/10.1007/978-1-4614-5441-0_28
[39] Perry, B. D., Caldow, M. K., Brennan-Speranza, T. C., Sbaraglia, M., Jerums, G., Garnham, A., Wong, C., Levinger, P., ul Haq, M. A., & Hare, D. L. (2016). Muscle atrophy in patients with Type 2 Diabetes Mellitus: roles of inflammatory pathways, physical activity and exercise. Exercise Immunology Review, 22, 94.
[40] De Silva, N. M. G., Borges, M. C., Hingorani, A. D., Engmann, J., Shah, T., Zhang, X., Luan, J. a., Langenberg, C., Wong, A., & Kuh, D. (2019). Liver function and risk of type 2 diabetes: bidirectional Mendelian randomization study. Diabetes, 68(8), 1681-1691.
[41] Wan, J.-Y., & Yang, L.-Z. (2022). Liver enzymes are associated with hyperglycemia in diabetes: A three-year retrospective study. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 545-555.
[42] Islam, S., Rahman, S., Haque, T., Sumon, A. H., Ahmed, A. Z. M., & Ali, N. (2020). Prevalence of elevated liver enzymes and its association with type 2 diabetes: A cross?sectional study in Bangladeshi adults. Endocrinology, diabetes & metabolism, 3(2), e00116.
[43] Higgins, C. (2016). Urea and the clinical value of measuring blood urea concentration. Acutecaretesting. Org, 1-6.
[44] Kamal, A. (2014). Impact of diabetes on renal function parameters. Ind J Fund Appl Life Sci, 4(3), 411-416.
[45] Eshetu, B., Worede, A., Fentie, A., Chane, E., Fetene, G., Wondifraw, H., Shimelis, M., Girma, M., Hadgu, R., & Demeke, K. (2023). Assessment of Electrolyte Imbalance and Associated Factors Among Adult Diabetic Patients Attending the University of Gondar Comprehensive Specialized Hospital, Ethiopia: A Comparative Cross-Sectional Study. Diabetes, Metabolic Syndrome and Obesity, 1207-1220.
[46] Veltri, K., & Mason, C. (2015). Medication-Induced Hypokalemia. P & T : a peer-reviewed journal for formulary management, 40, 185-190.
[47] Yasuda, K., Hayashi, M., Murayama, M., & Yamakita, N. (2016). Acidosis-Induced Hypochloremic Alkalosis in Diabetic Ketoacidosis Confirmed by The Modified Base Excess Method. The Journal of Clinical Endocrinology & Metabolism, 101(6), 2390-2395. https://doi.org/10.1210/jc.2016-1324
[48] Bhowmik, B., Siddiquee, T., Mujumder, A., Afsana, F., Ahmed, T., Mdala, I. A., do V. Moreira, N. C., Khan, A. K. A., Hussain, A., & Holmboe-Ottesen, G. (2018). Serum lipid profile and its association with diabetes and prediabetes in a rural Bangladeshi population. International journal of environmental research and public health, 15(9), 1944.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Tropical Pharmacy and Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.