Chemical, Spectral, Biological, and Toxicological Studies of Some Benzene Derivatives Used in Pharmaceuticals: In Silico Approach
DOI:
https://doi.org/10.25026/jtpc.v8i2.621Keywords:
Benzene derivatives (BDs), Density functional theory, Thermo-chemistry, Molecular docking, toxicologyAbstract
The immune system of humans is impacted by many drugs. Chemicals that have a gender-bending impact on boys, were synthesized, their use spread, and as a consequence, they entered the ecology, the food chain, and eventually ended up in blood or human breast milk. Due to the use of benzene in both industry and medicine, chemicals with benzene rings are among the most problematic. The generation of benzene metabolites that produce superoxide, the phenoxy radical, and benzene-drug binding are only a few of the processes by which benzene and its derivatives cause harm. Benzene metabolites are distinct from chemical metabolites apart from benzene, which is lipophilic in nature and binds to cellular membranes, in that they bind to the intracellular plasma membrane where they produce degenerative alterations. Many diseases are associated with degenerative alterations in the mitochondria that culminate in mitochondrial dysfunction. Herein, twenty benzene derivatives (BDs) have been studied in terms of their biological and physiochemical properties, and the compounds have also been investigated using quantum mechanical computations. Binding affinities and behaviors of all BDs have been investigated using molecular docking and nonbonding interactions on 3D crystal structures of human receptor proteins serum albumin (1AO6), free native cellulase CEL48F (1G9G), and human D-amino acid oxidase mutant (P219L) complexed with benzoate (6KBP). Geometry as well as thermochemical data support the stability of all structures. All derivatives were predicted by ADMET to have improved pharmacokinetic properties and less acute oral toxicity.
Downloads
References
[1] Mykhailiuk, P. K. Saturated Bioisosteres of Benzene: Where to Go Next? Org Biomol Chem, 2019, 17 (11), 2839–2849. https://doi.org/10.1039/c8ob02812e.
[2] Denisenko, A.; Garbuz, P.; Shishkina, S. V.; Voloshchuk, N. M.; Mykhailiuk, P. K. Saturated Bioisosteres of Ortho ?Substituted Benzenes. Angewandte Chemie, 2020, 132 (46), 20696–20702. https://doi.org/10.1002/ange.202004183.
[3] Gupta, S.; Basant, N.; Singh, K. P. Predicting Aquatic Toxicities of Benzene Derivatives in Multiple Test Species Using Local, Global and Interspecies QSTR Modeling Approaches. RSC Adv, 2015, 5 (87), 71153–71163. https://doi.org/10.1039/c5ra12825k.
[4] Wessel, M. D.; Jurs, P. C.; Tolan, J. W.; Muskal, S. M. Prediction of Human Intestinal Absorption of Drug Compounds from Molecular Structure. J Chem Inf Comput Sci, 1998, 38 (4), 726–735. https://doi.org/10.1021/ci980029a.
[5] Nies, E.; Korinth, G. Commentary on “Penetration of Benzene, Toluene, and Xylenes Contained in Gasolines through Human Abdominal Skin in Vitro.” Toxicology in Vitro, 2008, 22 (1), 275–277. https://doi.org/10.1016/j.tiv.2007.04.015.
[6] Ghasemi, J. B.; Salahinejad, M.; Rofouei, M. K.; Mousazadeh, M. H. Docking and 3D-QSAR Study of Stability Constants of Benzene Derivatives as Environmental Pollutants with ?-Cyclodextrin. J Incl Phenom Macrocycl Chem, 2012, 73 (1–4), 405–413. https://doi.org/10.1007/s10847-011-0078-4.
[7] Journal, I.; Science, P.; Available, H. C. Genotoxicity of Benzene and Soluble Benzene Substituted Organic Compounds in Mammals- A Review. 2014, 4 (4), 24–39.
[8] Ang, D.; Kendall, R.; Atamian, H. Virtual and In Vitro Screening of Natural Products Identifies Indole and Benzene Derivatives as Inhibitors of SARS-CoV-2 Main Protease (Mpro). Biology (Basel), 2023, 12 (4), 519. https://doi.org/10.3390/biology12040519.
[9] Patil, S. B. Biological and Pharmacological Significance of Benzimidazole Derivatives: A Review MEDICINAL SIGNIFICANCE OF BENZIMIDAZOLE ANALOGUES: A REVIEW. Article in International Journal of Pharmaceutical Sciences and Research, 2020, 11 (6), 2649–2654. https://doi.org/10.13040/IJPSR.0975-8232.11(6).2649-54.
[10] Volz, H.-P.; Laux, G. Tricyclics: Imipramine, Clomipramine, Trimipramine (Dibenzazepines). In NeuroPsychopharmacotherapy; Springer International Publishing: Cham, 2022, 1–11. https://doi.org/10.1007/978-3-319-56015-1_385-1.
[11] Nambela, L.; Haule, L. V.; Mgani, Q. A Review on Source, Chemistry, Green Synthesis and Application of Textile Colorants. J Clean Prod, 2020, 246, 119036. https://doi.org/10.1016/J.JCLEPRO.2019.119036.
[12] Vessally, E.?; Mohammadi, S.?; Abdoli, M.; Hosseinian, A. Convenient and Robust Metal-Free Synthesis of Benzazole-2-Ones Through the Reaction of Aniline Derivatives and Sodium Cyanate in Aqueous Medium; 2020, 39(5), 11-19.
[13] Nardi, M.; Cano, N. C. H.; Simeonov, S.; Bence, R.; Kurutos, A.; Scarpelli, R.; Wunderlin, D.; Procopio, A. A Review on the Green Synthesis of Benzimidazole Derivatives and Their Pharmacological Activities. Catalysts, 2023, 13 (2), 392. https://doi.org/10.3390/catal13020392.
[14] Castillo-Garit, J. A.; González Pérez, Y.; Albear, E. M.; Rodríguez, E.; Pérez-Doñate, V.; Pérez-Giménez, F. Environmental Toxicity Prediction Using Computational Tools: Prediction of Potential Hazardous Effects of Chemicals in Lactuca Sativa Seed Germination. Nereis, 2019, 11, 15–30.
[15] Sánchez-Morales, M.; Sabater, F.; Muñoz, I. Effects of Urban Wastewater on Hyporheic Habitat and Invertebrates in Mediterranean Streams. Science of the Total Environment, 2018, 642, 937–945. https://doi.org/10.1016/j.scitotenv.2018.06.132.
[16] Ziajahromi, S.; Neale, P. A.; Leusch, F. D. L. Wastewater Treatment Plant Effluent as a Source of Microplastics: Review of the Fate, Chemical Interactions and Potential Risks to Aquatic Organisms. Water Science and Technology, 2016, 74 (10), 2253–2269. https://doi.org/10.2166/wst.2016.414.
[17] Castillo-Garit, J. A.; Marrero-Ponce, Y.; Escobar, J.; Torrens, F.; Rotondo, R. A Novel Approach to Predict Aquatic Toxicity from Molecular Structure. Chemosphere, 2008, 73 (3), 415–427. https://doi.org/10.1016/j.chemosphere.2008.05.024.
[18] Benigni, R.; Fan, A.; Woo, Y.; Doull, J. Carcinogenicity of the Aromatic Amines: From Structure-Activity Relationships to Mechanisms of Action and Risk a ...
[19] Kharchevnikova, N. V.; Fjodorova, N.; Vracko, M. Quantum Chemical Simulation of Cytochrome P450 Catalyzed Oxidation and Carcinogenic Potency of Benzene Derivatives Quantum Chemical Simulation of Cytochrome P450 Catalyzed Oxidation and Carcinogenic Potency of Benzene Derivatives. 2008, No. December 2015. https://doi.org/10.1007/978-3-540-69367-3-164.
[20] Dureja, H.; Madan, A. K. Validation of Topochemical Models for the Prediction of Permeability through the Blood-Brain Barrier. Acta Pharmaceutica, 2007, 57 (4), 451–467. https://doi.org/10.2478/v10007-007-0036-2.
[21] Snyder, R.; Witz, G.; Goldstein, B. D. The Toxicology of Benzene. Environ Health Perspect, 1993, 100, 293–306. https://doi.org/10.1289/ehp.93100293.
[22] Suzuki, S.; Segawa, Y.; Itami, K.; Yamaguchi, J. Synthesis and Characterization of Hexaarylbenzenes with Five or Six Different Substituents Enabled by Programmed Synthesis. Nature Chemistry 2015 7:3, 2015, 7 (3), 227–233. https://doi.org/10.1038/nchem.2174.
[23] Liang, B.; He, X.; Hou, J.; Li, L.; Tang, Z. Membrane Separation in Organic Liquid: Technologies, Achievements, and Opportunities. Advanced Materials, 2019, 31 (45). https://doi.org/10.1002/adma.201806090.
[24] Yoosefian, M.; Raissi, H.; Davamdar, E.; Esmaeili, A. A.; Azaroon, M. Synthesis and Theoretical Study of Intramolecular Hydrogen Bond at Two Possible Positions in Pyrazolo[1,2-b] Phthalazine. Chin J Chem, 2012, 30 (4), 779–784. https://doi.org/10.1002/cjoc.201100036.
[25] Raissi, H.; Yoosefian, M.; Mollania, F. Hydrogen Bond Studies in Substituted Imino-Acetaldehyde Oxime. Comput Theor Chem, 2012, 996, 68–75. https://doi.org/10.1016/j.comptc.2012.07.017
[26] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. Gaussian 09, Revision D. 01. Gaussian, Inc., Wallingford CT 2009.
[27] Allouche, A. Gabedit—A Graphical User Interface for Computational Chemistry Software. J Comput Chem, 2011, 32 (1), 174–182.
[28] Geerlings, P.; De Proft, F.; Langenaeker, W. Conceptual Density Functional Theory. Chem Rev, 2003, 103 (5), 1793–1874.
[29] Yanai, T.; Tew, D. P.; Handy, N. C. A New Hybrid Exchange–Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). Chem Phys Lett, 2004, 393 (1–3), 51–57.
[30] Rassolov, V. A.; Pople, J. A.; Ratner, M. A.; Windus, T. L. 6-31G* Basis Set for Atoms K through Zn. J Chem Phys, 1998, 109 (4), 1223–1229.
[31] Uzzaman, M.; Hasan, M. K.; Mahmud, S.; Fatema, K.; Matin, M. M. Structure-Based Design of New Diclofenac: Physicochemical, Spectral, Molecular Docking, Dynamics Simulation, and ADMET Studies. Inform Med Unlocked, 2021, 100677.
[32] Petersilka, M.; Gossmann, U. J.; Gross, E. K. U. Excitation Energies from Time-Dependent Density-Functional Theory. Phys Rev Lett, 1996, 76 (8), 1212.
[33] Islam, N.; Islam, M. D.; Rahman, M. R.; Matin, M. M. Octyl 6-o-Hexanoyl-?-d-Glucopyranosides: Synthesis, Pass, Antibacterial, in Silico Admet, and Dft Studies. Current Chemistry Letters, 2021, 10 (4), 413–426. https://doi.org/10.5267/j.ccl.2021.5.003.
[34] Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P. W.; Tang, Y. AdmetSAR: A Comprehensive Source and Free Tool for Assessment of Chemical ADMET Properties. J Chem Inf Model, 2012, 52 (11), 3099–3105. https://doi.org/10.1021/ci300367a.
[35] Uddin, M. N.; Siddique, Z. A.; Mase, N.; Uzzaman, M.; Shumi, W. Oxotitanium(IV) Complexes of Some Bis-Unsymmetric Schiff Bases: Synthesis, Structural Elucidation and Biomedical Applications. Appl Organomet Chem, 2019, 33 (6). https://doi.org/10.1002/aoc.4876.
[36] Uddin, M. N.; Uzzaman, M.; Das, S.; Al-Amin, Md.; Haque Mijan, Md. N. Stress Degradation, Structural Optimization, Molecular Docking, ADMET Analysis of Tiemonium Methylsulphate and Its Degradation Products. Journal of Taibah University for Science, 2020, 14 (1), 1134–1146. https://doi.org/10.1080/16583655.2020.1805186.
[37] Uzzaman, M.; Hasan, M. K.; Mahmud, S.; Yousuf, A.; Islam, S.; Uddin, M. N.; Barua, A. Physicochemical, Spectral, Molecular Docking and ADMET Studies of Bisphenol Analogues; A Computational Approach. Inform Med Unlocked, 2021, 25, 100706. https://doi.org/10.1016/j.imu.2021.100706.
[38] Kabir, E.; Noyon, M. R. O. K.; Amjad Hossain, Md.; Acharjee, P. DFT and Pharmacokinetic Study of Some Heterocyclic Aspirin Derivatives as The Cyclooxygenase Inhibitors: An In-Silico Approach. Pharmacognosy Journal, 2023, 14 (6s), 1005–1021. https://doi.org/10.5530/pj.2022.14.204.
[39] Lewis, D. F. V.; Ioannides, C.; Parke, D. V. Interaction of a Series of Nitriles with the Alcohol-Inducible Isoform of P450: Computer Analysis of Structure-Activity Relationships. Xenobiotica, 1994, 24 (5), 401–408. https://doi.org/10.3109/00498259409043243.
[40] Saravanan, S.; Balachandran, V. Quantum Chemical Studies, Natural Bond Orbital Analysis and Thermodynamic Function of 2,5-Dichlorophenylisocyanate. Spectrochim Acta A Mol Biomol Spectrosc, 2014, 120, 351–364. https://doi.org/10.1016/j.saa.2013.10.042.
[41] Aihara, J. Reduced HOMO - LUMO Gap as an Index of Kinetic Stability for Polycyclic Aromatic Hydrocarbons. 1999, 7487–7495.
[42] Scrocco, E.; Tomasi, J. The Electrostatic Molecular Potential as a Tool for the Interpretation of Molecular Properties. New Concepts II, 2007, 95–170. https://doi.org/10.1007/3-540-06399-4_6.
[43] Politzer, P.; Murray, J. S. Molecular Electrostatic Potentials. ChemInform, 2004, 35 (27). https://doi.org/10.1002/chin.200427290.
[44] Ramalingam, S.; Karabacak, M.; Periandy, S.; Puviarasan, N.; Tanuja, D. Spectroscopic (Infrared, Raman, UV and NMR) Analysis, Gaussian Hybrid Computational Investigation (MEP Maps/HOMO and LUMO) on Cyclohexanone Oxime. Spectrochim Acta A Mol Biomol Spectrosc, 2012, 96, 207–220. https://doi.org/10.1016/j.saa.2012.03.090.
[45] Berthomieu, C.; Hienerwadel, R. Fourier Transform Infrared (FTIR) Spectroscopy. Photosynth Res, 2009, 101 (2–3), 157–170. https://doi.org/10.1007/s11120-009-9439-x.
[46] Green, J. H. S.; Harrison, D. J.; Kynaston, W. Vibrational Spectra of Benzene Derivatives—XV. Spectrochim Acta A, 1972, 28 (1), 33–44. https://doi.org/10.1016/0584-8539(72)80007-2.
[47] Coates, J. Interpretation of Infrared Spectra, A Practical Approach. Encyclopedia of Analytical Chemistry, 2006, 10815–10837. https://doi.org/10.1002/9780470027318.a5606.
[48] Florio, G. M.; Zwier, T. S.; Myshakin, E. M.; Jordan, K. D.; Sibert, E. L. Theoretical Modeling of the OH Stretch Infrared Spectrum of Carboxylic Acid Dimers Based on First-Principles Anharmonic Couplings. Journal of Chemical Physics, 2003, 118 (4), 1735–1746. https://doi.org/10.1063/1.1530573.
[49] Tariq, M.; Ali, S.; Ahmad, F.; Ahmad, M.; Zafar, M.; Khalid, N.; Khan, M. A. Identification, FT-IR, NMR (1H and 13C) and GC/MS Studies of Fatty Acid Methyl Esters in Biodiesel from Rocket Seed Oil. Fuel Processing Technology, 2011, 92 (3), 336–341. https://doi.org/10.1016/j.fuproc.2010.09.025.
[50] Subramanian, N.; Sundaraganesan, N.; Jayabharathi, J. Molecular Structure, Spectroscopic (FT-IR, FT-Raman, NMR, UV) Studies and First-Order Molecular Hyperpolarizabilities of 1,2-Bis(3-Methoxy-4-Hydroxybenzylidene) Hydrazine by Density Functional Method. Spectrochim Acta A Mol Biomol Spectrosc, 2010, 76 (2), 259–269. https://doi.org/10.1016/j.saa.2010.03.033.
[51] Sallam, H. A.; Elgubbi, A. S.; El-Helw, E. A. E. Synthesis and Antioxidant Screening of New 2-Cyano-3-(1,3-Diphenyl-1H-Pyrazol-4-Yl) Acryloyl Amide Derivatives and Some Pyrazole-Based Heterocycles. Synth Commun, 2020, 50 (13), 2066–2077. https://doi.org/10.1080/00397911.2020.1765258.
[52] Coates, J. Interpretation of Infrared Spectra, A Practical Approach. Encyclopedia of Analytical Chemistry, 2006, 10815–10837. https://doi.org/10.1002/9780470027318.a5606.
[53] Lengauer, T.; Rarey, M. Computational Methods for Biomolecular Docking. Curr Opin Struct Biol, 1996, 6 (3), 402–406. https://doi.org/10.1016/S0959-440X(96)80061-3.
[54] Wade, R. C.; Goodford, P. J. The Role of Hydrogen-Bonds in Drug Binding. Prog Clin Biol Res, 1989, 289, 433–444.
[55] Gill, D. M.; Ana, A. P.; Zazeri, G.; Shamir, S. A.; Mahmoud, A. M.; Wilkinson, F. L.; Alexander, M. Y.; L. Cornelio, M.; Jones, A. M. The Modulatory Role of Sulfated and Non-Sulfated Small Molecule Heparan Sulfate-Glycomimetics in Endothelial Dysfunction: Absolute Structural Clarification, Molecular Docking, and Simulated Dynamics, SAR Analyses and ADMET Studies. RSC Med Chem, 2021, 12 (5), 779–790. https://doi.org/10.1039/d0md00366b.
[56] Shen, J.; Cheng, F.; Xu, Y.; Li, W.; Tang, Y. Estimation of ADME Properties with Substructure Pattern Recognition. J Chem Inf Model, 2010, 50 (6), 1034–1041. https://doi.org/10.1021/ci100104j.
[57] Bickerton, G. R.; Paolini, G. V.; Besnard, J.; Muresan, S.; Hopkins, A. L. Quantifying the Chemical Beauty of Drugs. Nat Chem, 2012, 4 (2), 90–98. https://doi.org/10.1038/nchem.1243.
[58] Veber, D. F.; Johnson, S. R.; Cheng, H. Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J Med Chem, 2002, 45 (12), 2615–2623. https://doi.org/10.1021/jm020017n.
[59] Amin, M. L. P-Glycoprotein Inhibition for Optimal Drug Delivery. Drug Target Insights, 2013, 2013 (7), 27–34. https://doi.org/10.4137/DTI.S12519.
[60] Wilkin, M. Cost Shifting and the Quality Use of Medicines. Aust Prescr, 2015, 38 (1), 4–5. https://doi.org/10.18773/austprescr.2015.007.
[61] Lamothe, S. M.; Guo, J.; Li, W.; Yang, T.; Zhang, S. The Human Ether-a-Go-Go-Related Gene (HERG) Potassium Channel Represents an Unusual Target for Protease-Mediated Damage. Journal of Biological Chemistry, 2016, 291 (39), 20387–20401. https://doi.org/10.1074/jbc.M116.743138.
[62] [62] Valavanidis, P. A.; Vlachogianni, T. “Carcinogenic Chemicals: Classification and Evaluation of Carcinogenic Risk to Humans by International Organizations and the European Union.” 2010, No. April.
[63] Yost, E. E.; Stanek, J.; Dewoskin, R. S.; Burgoon, L. D. Overview of Chronic Oral Toxicity Values for Chemicals Present in Hydraulic Fracturing Fluids, Flowback, and Produced Waters. Environ Sci Technol, 2016, 50 (9), 4788–4797. https://doi.org/10.1021/acs.est.5b04645.
[64] Zhu, H.; Martin, T. M.; Ye, L.; Sedykh, A.; Young, D. M.; Tropsha, A. Quantitative Structure-Activity Relationship Modeling of Rat Acute Toxicity by Oral Exposure. Chem Res Toxicol, 2009, 22 (12), 1913–1921. https://doi.org/10.1021/tx900189p.
[65] Cheng, F.; Ikenaga, Y.; Zhou, Y.; Yu, Y.; Li, W.; Shen, J.; Du, Z.; Chen, L.; Xu, C.; Liu, G.; et al. In Silico Assessment of Chemical Biodegradability. J Chem Inf Model, 2012, 52 (3), 655–669. https://doi.org/10.1021/ci200622d.
[66] Uzzaman, M.; Hasan, M. K.; Mahmud, S.; Fatema, K.; Matin, M. M. Structure-Based Design of New Diclofenac: Physicochemical, Spectral, Molecular Docking, Dynamics Simulation, and ADMET Studies. Inform Med Unlocked, 2021, 25, 100677. https://doi.org/10.1016/j.imu.2021.100677.
[67] Azab, A.; Nassar, A.; Azab, A. N. Anti-Inflammatory Activity of Natural Products. Molecules, 2016, 21 (10), 1–19. https://doi.org/10.3390/molecules21101321.
[68] De Clercq, E. Strategies in the Design of Antiviral Drugs. Nat Rev Drug Discov, 2002, 1 (1), 13–25. https://doi.org/10.1038/nrd703.
[69] J, K.; D, C.; M, R. Molecular Docking, Drug-Likeness Studies and ADMET Prediction of Quinoline Imines for Antimalarial Activity. J Med Chem Drug Des, 2019, 2 (1), 1–7. https://doi.org/10.16966/2578-9589.113.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Tropical Pharmacy and Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.